China Best Sales High Voltage Motor Three Phase Induction Electrical Motor for Water Pump, Air Compressor, Gear Reduced Fan Blower (Y2/YE3 Series) vacuum pump brakes

Product Description

Why choose us ?
ELECTRIC MOTOR FEATURES  

Electric motor frame from 56 – 355, output range from 0.17HP to 430HP

Motor mounting type B3 (IM 1001), B35 (IM 2001), B5 (IM 3001), B14 (IM 3601), B34 (IM 2101)

Optional voltage 110V, 120V, 220V, 240V, 220/380V, 230V/400V, 380V/660V, 50HZ or 60HZ

Protection type IP44, IP54, IP55 on request 

Multiple mounting arrangement for optional           
Aluminum frame, end shields and base    

Strong cast iron frame
High strength cable
Shaft key and protector supplied        
Superior paint finish         
45# steel shaft and stainless steel shaft is optional
Electric motor continuous duty S1,S4
Electric motor have vacuum impregnation for insulation
Electric motor is class F insulation and class H insulation is optional
Electric motor has been make according to ISO9001, CE, UL, CCC, GS request

All of our products are make according to GOST, RoHS and IEC standard.

High performance and IE1, IE2, IE3 efficiency  

 

OUR ELECRIC MOTOR FOR CUSTOMER BENEFITS

Electricity saving and quiet operation
Electric motor can withstand water, dust and vermin
Electric motor very easy installation
Electric motor dependable Corrosion resistant and long life to work
Reliability performance and very competitive price.
 

HOW TO MAKE MOTOR ON CHINAMFG COMPANY

1. Silicon steel DR510, 800, 600, 360 standard use stamping of lamination stator and rotor die-casting

2. 100% copper winding and inserting stator (manual and semi-automatically)

3. Stator Vacuum impregnation and drying

4. CNC machining motor shaft, frame, end shields, etc

5. Professional workman inspecting spare parts every processing

6. Electric motor assembly product line

7. Electric motor will 100% test before painting.

8. Electric motor spray-paint on motor painting product line

9. Electric motor will 100% check again before packing.

An electric motor from material to finish motor, must pass 15 time check, and 100% testing, output power, voltage, electric current, non-load, 50% load, 75% load, 100% load and check the nameplate, packing. Finally shipping to our customer.

Att:Our company price was based on high height cold rolled steel stator to promise the efficiency ,if you need to cheaper ,you can choose short height stator or hot cold rolled steel stator ,thankyou

Product details 

YE3 PARAMETERS

SYNCHRONOUS OUTPUT SPEED=3000RPM     FREQUENCY=50HZ  VOLTAGE=380V 

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED  

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-63M1-2 0.18kw 0.53 2720 63.9 0.8 0.63 2.2 5.5 2.2 61
YE3-63M2-2 0.25kw 0.7 2720 97.1 0.81 0.88 2.2 5.5 2.2 61
YE3-71M1-2 0.37kw 1 2740 69 0.81 1.29 2.2 6.1 2.2 62
YE3-71M2-2 0.55kw 1.4 2740 72.3 0.82 1.92 2.2 6.1 2.2 62
YE3-801-2 0.75kw 1.8 2830 80.7 0.83 2.5 2.2 7 2.3 62
YE3-802-2 1.1kw 2.5 2840 82.7 0.83 3.65 2.2 7.3 2.3 62
YE3-90S-2 1.5kw 3.4 2840 84.2 0.84 4.97 2.2 7.6 2.3 67
YE3-90L-2 2.2kw 4.8 2840 85.9 0.85 7.3 2.2 7.6 2.3 67
YE3-100L-2 3kw 6.3 2870 87.1 0.87 9.95 2.2 7.8 2.3 74
YE3-112M-2 4kw 8.2 2890 88.1 0.88 13.1 2.2 8.3 2.3 77
YE3-132S1-2 5.5kw 11.1 2900 89.2 0.88 17.9 2 8.3 2.3 79
YE3-132S2-2 7.5kw 15 2900 90.1 0.89 24.4 2 7.9 2.3 79
YE3-160M1-2 11kw 21.3 2930 912 0.89 35.6 2 8.1 2.3 81
YE3-160M2-2 15kw 28.7 2930 91.9 0.89 48.6 2 8.1 2.3 81
YE3-160L-2 18.5kw 34.7 2930 92.4 0.89 60 2 8.2 2.3 81
YE3–180M-2 22kw 41.2 2940 92.7 0.89 71.2 2 8.2 2.3 83
YE3-200-L1-2 30kw 55.3 2950 93.3 0.89 96.6 2 7.6 2.3 84
YE3-200L2-2 37kw 67.9 2950 93.7 0.89 119 2 7.6 2.3 84
YE3-225M-2 45kw 82.1 2970 94 0.89 145 2 7.7 2.3 86
YE3-250M-2 55kw 100.1 2970 94.3 0.89 177 2 7.7 2.3 89
YE3-280S-2 75kw 134 2970 94.7 0.89 241 1.8 7.1 2.3 91
YE3-280M-2 90kw 160.2 2970 95 0.89 289 1.8 7.1 2.3 91

SYNCHRONOUS OUTPUT SPEED=1500RPM     FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-63M1-4 0.12kw 0.45 1310rpm 55.8 0.72 0.87 2.1 4.4 2.2 52
YE3-63M2-4 0.18kw 0.64 1310rpm 58.6 0.73 1.31 2.1 4.4 2.2 52
YE3-71M1-4 0.25kw 0.81 1330rpm 63.6 0.74 1.8 2.1 5.2 2.2 55
YE3-71M2-4 0.37kw 1.1 1330rpm 65.3 0.75 2.66 2.1 5.2 2.2 55
YE3-801-4 0.55kw 1.4 1390rpm 80.6 0.75 3.67 2.3 6.5 2.3 56
YE3-8002-4 0.75kw 1.9 1390rpm 82.5 0.75 5.01 2.3 6.6 2.3 56
YE3-90S-4 1.1kw 2.7 1400rpm 84.1 0.76 7.35 2.3 6.8 2.3 59
YE3-90L-4 1.5kw 3.6 1400rpm 85.3 0.77 10 2.3 7 2.3 59
YE3-100L1-4 2.2kw 4.8 1430rpm 86.7 0.81 14.6 2.3 7.6 2.3 64
YE3-100L2-4 3kw 6.6 1430rpm 87.7 0.82 19.9 2.3 7.6 2.3 64
YE3-112M-4 4kw 8.6 1440rpm 88.6 0.82 26.3 2.2 7.8 2.3 65
YE3-132S-4 5.5kw 11.6 1440rpm 89.6 0.83 35.9 2 7.9 2.3 71
YE3-132M-4 7.5kw 14.6 1440rpm 90.4 0.84 48.9 2 7.5 2.3 71
YE3-160M-4 11kw 22.6 1460rpm 91.4 0.85 71.5 2 7.7 2.3 73
YE3-160L-4 15kw 29.3 1460rpm 92.1 0.86 97.4 2 7.8 2.3 73
YE3-180M-4 18.5kw 35.45 1470rpm 92.6 0.86 120 2 7.8 2.3 76
YE3-180L-4 22kw 42.35 1470rpm 93 0.86 143 2 7.8 2.3 76
YE3-200L-4 30kw 57.6 1475rpm 93.6 0.86 194 2 7.3 2.3 76
YE3-225S-4 37kw 69.8 1480rpm 93.9 0.86 239 2 7.4 2.3 78
YE3-225M-4 45kw 84.5 1480rpm 94.2 0.86 290 2 7.4 2.3 78
YE3-250M-4 55kw 103.1 1485rpm 94.6 0.86 354 2 7.4 2.3 79
YE3-280S-4 75kw 139.7 1490rpm 95 0.88 481 2 6.7 2.3 80
YE3-280M-4 90kw 166.9 1485rpm 95.2 0.88 577 2 6.9 2.3 80

SYNCHRONOUS OUTPUT SPEED=1000RPM     FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-71M1-6 0.18kw 0.76 850rpm 54.6 0.66 2.02 1.9 4 2 52
YE3-71M2-6 0.25kw 0.97 850rpm 57.4 0.68 2.81 1.9 4 2 52
YE3-80M1-6 0.37kw 1.2 890rpm 68 0.7 3.88 1.9 5.5 2.1 54
YE3-80M2-6 0.55kw 1.7 890rpm 72 0.71 5.68 1.9 5.8 2.1 54
YE3-90S-6 0.75kw 2.2 910rpm 78.9 0.71 7.58 2 6 2.1 57
YE3-90L-6 1.1kw 3.8 910rpm 81 0.73 11.1 2 6 2.1 57
YE3-100L-6 1.5kw 3.8 940rpm 82.5 0.73 15.1 2 6.5 2.1 61
YE3-112M-6 2.2kw 5.4 940rpm 84.3 0.74 21.8 2 6.6 2.1 65
YE3-132S-6 3kw 7.4 960rpm 85.6 0.74 29.4 1.9 6.8 2.1 69
YE3-132M1-6 4kw 9.6 960rpm 86.8 0.74 39.2 1.9 6.8 2.1 69
YE3-132M2-6 5.5kw 12.9 960rpm 88 0.75 53.9 2 7 2.1 69
YE3-160M-6 7.5kw 17 970rpm 89.1 0.79 73.1 2.1 7 2.1 70
YE3-160L-6 11kw 24.2 970rpm 90.3 0.8 107 2.1 7.2 2.1 70
YE3-180L-6 15kw 31.6 970rpm 91.2 0.81 146 2 7.3 2.1 73
YE3-200L1-6 18.5kw 38.1 970rpm 91.7 0.81 179 2.1 7.3 2.1 73
YE3-200L2-6 22kw 44.5 970rpm 92.2 0.81 213 2.1 7.4 2.1 73
YE3-225M-6 30kw 58.6 980rpm 92.9 0.83 291 2 6.9 2.1 74
YE3-250M-6 37kw 71 980rpm 93.3 0.84 359 2.1 7.1 2.1 76
YE3-280S-6 45kw 85.9 980rpm 93.7 0.85 434 2.1 7.3 2.1 78
YE3-280M-6 55kw 104.7 980rpm 94.1 0.86 531 2.1 7.3 2.1 78

 SYNCHRONOUS OUTPUT SPEED=750RPM      FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-801-8 0.18kw 0.81 630rpm 56 0.61 2.5 1.8 3.3 1.9 52
YE3-802-8 0.25kw 1.1 640rpm 59 0.61 3.4 1.8 3.3 1.9 52
YE3-90S-8 0.37kw 1.4 660rpm 66 0.61 5.1 1.8 4 1.9 56
YE3-90L-8 0.55kw 2.1 660rpm 70 0.61 7.6 1.8 4 2 56
YE3-100L1-8 0.75kw 2.4 690rpm 73.5 0.67 10.2 1.8 4 2 59
YE3-100L2-8 1.1kw 3.4 690rpm 76.5 0.69 14.9 1.8 5 2 59
YE3-112M-8 1.5kw 4.4 680rpm 77.5 0.7 20 1.8 5 2 61
YE3-132S-8 2.2kw 6 710rpm 80 0.71 28.8 1.8 6 2 64
YE3-132M-8 3kw 7.9 710rpm 82.5 0.73 39.2 1.8 6 2 64
YE3-160M1-8 4kw 10.2 720rpm 85 0.73 52.7 1.9 6 2 68
YE3-160M2-8 5.5kw 13.6 720rpm 86 0.74 82.4 1.9 6 2 68
YE3-160L-8 7.5kw 17.8 720rpm 87.5 0.75 98.1 1.9 6 2 68
YE3-180L-8 11kw 25.2 730rpm 89 0.75 145 2 6.5 2 70
YE3-200L-8 15kw 34 730rpm 90.4 0.76 196 2 6.6 2 73
YE3-225S-8 18.5kw 40.5 740rpm 91.2 0.76 240 1.9 6.6 2 73
YE3-225M-8 22kw 47.3 740rpm 91.5 0.78 286 1.9 6.6 2 73
YE3-250M-8 30kw 63.4 740rpm 92.2 0.79 390 1.9 6.5 2 75
YE3-280S-8 37kw 76.8 740rpm 93 0.79 478 1.9 6.6 2

FAQ 

Q1: What about the shipping methods?

1): For urgent order and light weight, you can choose the following express: UPS, FedEx, TNT, DHL, EMS.

 For heavy weight, you can choose to deliver the goods by air or by sea to save cost.
 

Q2: What about the payment methods?

A2: We accept T/T, L/C for big amount, and for small amount, you can pay us by PayPal, Western Union etc.
 

Q3: How much does it cost to ship to my country?

A3: It depends on seasons. Fee is different in different seasons. You can consult us at all times.
 

Q4: What’s your delivery time?

A4: Usually we produce within 25-30days after the payment came.
 

Q5: Can I print our logo/code/series number on your motor?

A5: Yes, of course.
 

Q6: Can I order some sample for our testing?

A6: Yes, but it needs some expenses.
 

Q7: Can you customize my product in special requirement?

A7: Yes, we can offer OEM.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2.4.6.8.10.12
Customization:
Available

|

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China Best Sales High Voltage Motor Three Phase Induction Electrical Motor for Water Pump, Air Compressor, Gear Reduced Fan Blower (Y2/YE3 Series)   vacuum pump brakesChina Best Sales High Voltage Motor Three Phase Induction Electrical Motor for Water Pump, Air Compressor, Gear Reduced Fan Blower (Y2/YE3 Series)   vacuum pump brakes
editor by CX 2024-04-10